THERMAL REARRANGEMENTS OF

EXO- AND ENDO-TRICYCLO[3.2.1.0^{2,4}]OCT-6-ENE

Robin B. Kinnel

Department of Chemistry, Hamilton College, Clinton, NY 13323

and

Peter K. Freeman

Department of Chemistry, Oregon State University, Corvallis, OR 97331

(Received in USA 6 September 1973; received in UK for publication 16 October 1973)

The study of transition metal catalyzed isomerization reactions of *exo-* and *endo-*tricyclo- $[3.2.1.0^{2,4}]$ octene (1 and 2, respectively) has received recent attention.¹ Photochemical reaction of either isomer affords the $[\sigma_{s}^{2} + \pi_{s}^{2}]$ cycloaddition product, tetracyclooctane 4.² Thermal rearrangements of derivatives of the parent system afford a variety of products which have been rationalized in terms of diradical mechanisms.³

We wish to report that $\frac{1}{4}$ rearranges quantitatively to a 4:1 mixture of bicyclo[3.2.1]octa-2, 6-diene ($\frac{3}{4}$) and tetracyclo[3.3.0.0^{2,8}.0^{4,6}]octane ($\frac{4}{4}$) upon pyrolysis in the gas phase at 290°. By contrast, the *endo* isomer $\frac{2}{4}$ rearranges quantitatively to a 98:2 mixture of $\frac{4}{4}$ and $\frac{3}{4}$, respectively. Product stability studies indicate that $\frac{4}{4}$ slowly rearranges to $\frac{3}{4}$ upon heating to 290°. Thus, it appears that $\frac{4}{4}$ is the sole primary product from the *endo* isomer.⁴ Interestingly, the rate of formation of $\frac{4}{4}$ for the *endo* isomer is approximately 45 times the rate for the *exo* isomer (Table 1). The difference can be accounted for largely by the larger torsional interactions between the hydrogens at C-1 and C-2 and at C-4 and C-5 in the *endo* isomer. These forces are relieved by cleavage of the C-2, C-4 carbon bond to afford a diradical, which then undergoes cyclization. Torsional arguments have been used to explain the preference for *exo* hydride migration in the norbornyl cation,⁵ and the preference seems to manifest itself in a similar rate difference (*exo:endo* hydride migration > 100).

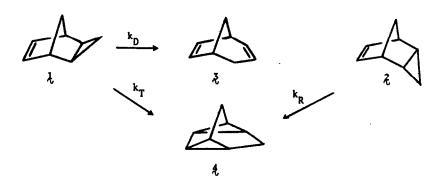
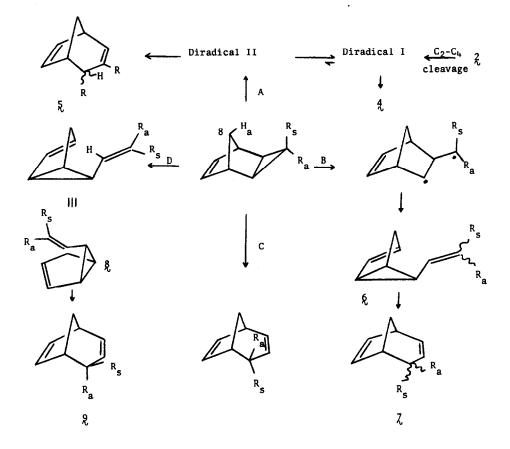




Table 1. Rates for Thermolysis of the Tricyclooctenes k at $287.5^{\circ} \times 10^{5} \text{ sec}^{-1}$

k _T	0.33	±	0.015	
к _р	1.3	±	.15	
^k R	15	±	1.5	

The mechanism for the formation of $\frac{3}{2}$ in the pyrolysis of $\frac{1}{2}$ can be rationalized in several ways. Fission of the C_2-C_4 bond with generation of a diradical, necessarily different from that from 2, followed by hydrogen shift to form $\frac{5}{2}$ represents one alternative (pathway A). A second possibility consists of cleavage of the C_2-C_3 bond to a diradical, followed by bond reorganization to divinylcyclopropane $\frac{6}{2}$ which is known to rearrange to bicyclooctadiene $\frac{3}{2}^6$ (pathway B). The intermediate radical center at C_3 should have a lifetime sufficiently long to permit stereochemical equilibration at that center, ⁷ resulting in scrambling of R_s and R_a in $\frac{6}{2}$ and $\frac{7}{2}$. Diradical pathways may be avoided in a concerted rearrangement $[\sigma^2_s + \sigma^2_a]^8$ leading directly to bicyclo[3.2.1]octadiene (pathway C) or in a $[\pi^2_s + \sigma^2_a + \sigma^2_a]$ cycloreversion (pathway D) to the divinylcyclopropane derivative $\frac{8}{2}$ which then rearranges stereospecifically⁹ to $\frac{9}{2}$.

A sample of $\frac{1}{6}$, deuterated at C_3 , whose d_{syn}/d_{anti} ratio was determined to be 2.0 ± 0.1 and whose total deuterium content was 88.5 ± 2.0%,¹⁰ was pyrolyzed. The bicyclooctadiene formed was isolated and converted into monoepoxide 10.¹² Addition of Eu(fod)₃ resulted in separation of all hydrogens. Analysis of the spectrum¹³ revealed that all the deuterium(88.2 ± 2.6%) was at C_4 and that the d_{exo}/d_{endo} ratio was 2.0 ± 0.1. It is clear that these results support only the concerted $[\pi^2_5 + \sigma^2_a + \sigma^2_a]$ alternative. This particular process would require considerable interaction of the π -system with the cyclopropyl group in the developing transition state; such an interaction not only seems reasonable, but has been demonstrated in $\frac{1}{4}$ and not in $\frac{2}{4}$ by photoelectron spectroscopy.¹⁴

<u>Acknowledgements</u>. We are grateful to Sigma Xi and the National Science Foundation for partial support of this work.

REFERENCES

- H. Volger, H. Hogeveen and M. M. P. Gaasbeek, J. Amer. Chem. Soc., 91, 218 (1969); H. Volger, H. Hogeveen and M. M. P. Gaasbeek, *ibid.*, 91, 2137 (1969); T. J. Katz and S. A. Cerefice, *ibid.*, 91, 6519 (1969).
- 2) P. K. Freeman, D. G. Kuper and V. N. M. Rao, Tetrahedron Lett., 3303, (1965).
- 3) H. Prinzbach, W. Eberbach, M. Klaus and G. Veh, Chem. Ber., 101, 4066 (1968); H. Prinzbach and H. D. Martin, Helv. Chim. Acta, 51, 438 (1968); D. T. Longone and D. M. Stehouwer, Tetrahedron Lett., 1017 (1970); H. D. Martin, Ph.D. Thesis, U. of Frieburg, cited in W. Eberbach and H. Prinzbach, Chem. Ber., 102, 4164 (1969); H.-D. Martin, Chimia, 26, 16 (1972).
- 4) The reactions are sensitive to the presence of trace impurities on the glass surface, which can result in a less clean reaction and some polymerization. The most consistent results were obtained by washing the pyrolysis tubes with dilute ammonia.
- 5) P. vR. Schleyer, J. Amer. Chem. Soc., 89, 699 (1967), and references cited therein.
- J. M. Brown, Chem. Commun., 266 (1965); C. Cupas, W. E. Watts and P. vR. Schleyer, Tetrahedron Lett., 2503 (1964).
- 7) L. M. Stephenson and J. I. Brauman, J. Amer. Chem. Soc., 83, 1988 (1971).
- G. D. Andrews, M. Davalt and J. E. Baldwin, *ibid.*, *95*, 5044 (1973); J. I. Brauman, W. E. Farneth and M. B. D'Amore, *ibid.*, *95*, 5043 (1973).
- 9) B. C. Cantello, J. M. Mellor and G. Scholes, J. Chem. Soc. C, 2915 (1971).
- 10) The syn/anti ratio could be estimated by conversion to the epoxide¹¹ and conducting a chemical shift study using Eu(fod)₃. Protons R_s, R_a and H_{ga} were isolated on a 250 Hz scan. Percentage deuterium and d_{sun}/d_{anti} were estimated using H_{ga} as a standard.
- 11) G. D. Sargent, M. J. Harrison and G. Khoury, J. Amer. Chem. Soc., 87, 4937 (1969).
- 12) Epoxidation with m-chloroperoxybenzoic acid afforded a major and a minor epoxide which were easily separated using glc. A chemical shift study on the undeuterated epoxide is consistent only with the 7-oxatricyclo[3.3.1.0^{°,9}]oct-2-ene. The infrared spectrum is also in agreement.
- 13) Two hydrogens (deuteriums) at C_4 in 10 and the hydrogen at C_{9a} were isolated on a 250 Hz scan. Integration was carried out using the C_{9a} hydrogen as a standard.
- 14) P. Bischof, E. Heilbronner, H. Prinzbach and H. D. Martin, Helv. Chim. Acta, 54, 1072 (1971).