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The study of transition metal catalyzed isomerization reactions of exo- and endo-tricyclo- 

[3.2.1.02s4]octene (I and 2, respectively) has received recent attention. 1 Photochemical 

reaction of either isomer affords the [o2s + ,,Zs] cycloaddition product, tetracyclooctane $.' 

Thermal rearrangements of derivatives of the parent system afford a variety of products which 

have been rationalized in terms of diradical mechanisms.5 

We wish to report that i rearranges quantitatively to a 4:l mixture of bicyclo[3.2.l]octa-2, 

6-diene (2) and tetracyclo[3.3.0.02g8.04b6] t DC ane ($,) upon pyrolysis in the gas phase at 290'. 

By contrast, the endo isomer 2 rearranges quantitatively to a 98:2 mixture of $ and 2, 

respectively. Product stability studies indicate that 4, slowly rearranges to t upon heating to 

290°. Thus, it appears that & is the sole primary product from the endo isomer.4 Interestingly, 

the rate of formation of $, for the endo isomer is approximately 45 times the rate for the exo 

isomer (Table 1). The difference can be accounted for largely by the larger torsional inter- 

actions between the hydrogens at C-l and C-2 and at C-4 and C-5 in the endo isomer. These forces 

are relieved by cleavage of the C-2, C-4 carbon bond to afford a diradical, which then undergoes 

cyclization. Torsional arguments have been used to explain the preference for era hydride 

migration in the norbornyl cation, 5 and the preference seems to manifest itself in a similar 

rate difference (e.ro:endo hydride migration > 100). 
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Table 1. Rates for Thermolysis of the Tricyclooctenes 

k at 2g7.Sa x 15’ set -1 

kT 0.33 f 0.015 

kD 1.3 1: -1s 

kR 15 * 1.5 

The mechanism for the formation of 2 in the pyrolysis of t can be rationalized in 

several ways. Fission of the C2-Cq bond with generation of a diradical, necessarily different 

from that from 5, followed by hydrogen shift to foa $, represents one alternative (pathway .4). 

A second possibility consists of cleavage of the C2-C3 bond to a diradical, followed by bond 

reorganization to divinylcyclopropane #, which is known to rearrange to bicyclooctadiene 2 6 

(pathway B) . The intermediate radical center at C3 should have a lifetime sufficiently long to 

permit stereochemical equilibration at that center,7 resulting in scrambling of Rs and Ra in 

Q and 5. Diradical pathways may be avoided in a concerted rearrangement [02s + 02a]8 leading 

directly to bicyclo[3.2.l]octadiene (pathway C) or in a [n2s + a2a + 02a] cycloreversion 

(pathway D) to the divinylcyclopropane derivative t which then rearranges stereospecifically’ 

to 2. 
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A sample of ,& deuterated at C3, whose d qjn4nti ratio was determined to be 2.0 + 0.1 and 

whose total deuterium content was 88.5 f 2.0%,l” was pyrolyzed. The bicyclooctadiene formed 

was isolated and converted into monoepoxide 10. 12 Addition of Eu(fod)3 resulted in separation 

of all hydrogens. Analysis of the spectrum 13 revealed that all the deuterium(88.2 f 2.6%) was 

at C4 and that the d,,/d,& ratio was 2.0 f 0.1. It is clear that these results support only 

the concerted [n2s l a2a + o2,] alternative. This particular process would require considerable 

interaction of the s-system with the cyclopropyl group in the developing transition state; 

such an interaction not only seems reasonable, but has been demonstrated in & and not in 2 by 

photoelectron spectroscopy. 14 
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